Abstract

Local Parameter Histograms (LPH) based on Gaussian–Markov random fields (GMRFs) have been successfully used in effective texture discrimination. LPH features represent the normalized histograms of locally estimated GMRF parameters via local linear regression. However, these features are not rotation invariant. In this paper two techniques to design rotation invariant LPH texture descriptors are discussed namely, Rotation Invariant LPH (RI-LPH) and the Isotropic LPH (I-LPH) descriptors. Extensive texture classification experiments using traditional GMRF features, LPH features, RI-LPH and I-LPH features are performed. Furthermore comparisons to the current state-of-the-art texture features are made. Classification results demonstrate that LPH, RI-LPH and I-LPH features achieve significantly better accuracies compared to the traditional GMRF features. RI-LPH descriptors give the highest classification rates and offer the best texture discriminative competency. RI-LPH and I-LPH features maintain higher accuracies in rotation invariant texture classification providing successful rotational invariance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.