Abstract
Rotation-invariant features are of great importance for object detection and image classification in very-high-resolution (VHR) optical remote sensing images. Though multibranch convolutional neural network (mCNN) has been demonstrated to be very effective for rotation-invariant feature learning, how to effectively train such a network is still an open problem. In this article, a nested Siamese structure (NSS) is proposed for training the mCNN to learn effective rotation-invariant features, which consists of an inner Siamese structure to enhance intraclass cohesion and an outer Siamese structure to enlarge interclass margin. Moreover, a double center loss (DCL) function, in which training samples from the same class are mapped closer to each other while those from different classes are mapped far away to each other, is proposed to train the proposed NSS even with a small amount of training samples. Experimental results over three benchmark data sets demonstrate that the proposed NSS trained by DCL is very effective to encounter rotation varieties when learning features for image classification and outperforms several state-of-the-art rotation-invariant feature learning algorithms even when a small amount of training samples are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.