Abstract

Results of a numerical study of the supersonic high-enthalpy flow over a spherically blunt cone taking into account complicating factors are presented. These factors include simultaneous action of rotation of the body around the longitudinal axis and processes in ablating heat shield. The problem of body heating in a conjugate formulation is solved. At a nonzero angle of attack influence of an aircraft rotation with a small angular velocity (0–500 deg/s) on surface temperature distribution and heat and mass transfer is considered. The asymmetries of surface temperature and material removal via ablation on a rotating body were studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.