Abstract
In this paper, we present the anisotropic Angular Radon Spectrum (ARS), a novel feature for global estimation of rotation in a two dimension space. ARS effectively describes collinearity of points and has the properties of translation-invariance and shift-rotation. We derive the analytical expression of ARS for Gaussian Mixture Models (GMM) representing point clouds where the Gaussian kernels have arbitrary covariances. Furthermore, we developed a preliminary procedure for simplification of GMM suitable for efficient computation of ARS. Rotation between point clouds is estimated by searching of maximum of correlation between their spectra. Correlation is efficiently computed from Fourier series expansion of ARS. Experiments on datasets of distorted object shapes, laser scans and on robotic mapping datasets assess the accuracy and robustness to noise in global rotation estimation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.