Abstract

The role of electron cyclotron resonance heating (ECRH) on the toroidal rotation velocity profile has been investigated in the JT-60U tokamak device by separating the effects of the change in momentum transport, the intrinsic rotation by pressure gradient, and the intrinsic rotation by ECRH. It is found that ECRH increases the toroidal momentum diffusivity and the convection velocity. It is also found that ECRH drives the codirection (co) intrinsic rotation inside the EC deposition radius and the counterdirection (ctr) intrinsic rotation outside the EC deposition radius. This ctr rotation starts from the EC deposition radius and propagates to the edge region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.