Abstract

The explicit expressions of energy eigenvalues and eigenfunctions of bound states for a three-dimensional diatomic molecule oscillator with a hyperbolic potential function are obtained approximately by means of the hypergeometric series method. Then for a one-dimensional system, the rigorous solutions of bound states are solved with a similar method. The eigenfunctions of a one-dimensional diatomic molecule oscillator, expressed in terms of the Jacobi polynomial, are employed as an orthonormal basis set and the analytic expressions of matrix elements for position and momentum operators are given in a closed form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.