Abstract
Halobacterium halobium swims with a polarly inserted motor-driven flagellar bundle. The swimming direction of the cell can be reserved by switching the rotational sense of the bundle. The switch is under the control of photoreceptor and chemoreceptor proteins that act through a branched signal chain. The swimming behavior of the cells and the switching process of the flagellar bundle were investigated with a computer-assisted motion analysis system. The cells were shown to swim faster by clockwise than by counterclockwise rotation of the flagellar bundle. From the small magnitude of speed fluctuations, it is concluded that the majority, if not all, of the individual flagellar motors of a cell rotate in the same direction at any given time. After stimulation with light (blue light pulse or orange light step-down), the cells continued swimming with almost constant speed but then slowed before they reversed direction. The cells passed through a pausing state during the change of the rotational sense of the flagellar bundle and then exhibited a transient acceleration. Both the average length of the pausing period and the transient acceleration were independent of the stimulus size and thus represent intrinsic properties of the flagellar motor assembly. The average length of the pausing period of individual cells, however, was not constant. The time course of the probability for spontaneous motor switching was calculated from frequency distribution and shown to be independent of the rotational sense. The time course further characterizes spontaneous switching as a stochastic rather than an oscillator-triggered event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.