Abstract

The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The cable is then inserted into a jacket under tensile force that increases with the length of insertion. Because the cables are long and with a large diameter, the insertion force could reach values of about 40 kN. The large tensile force could lead to significant rotation forces. This may lead to an increase of the twist pitch, especially for the final one. Understanding the twist pitch variation is very important; in particular, the twist pitch of a cable inside a CICC strongly affects its properties, especially for Nb3Sn conductors. In this paper, a simplified numerical model was used to analyze the cable rotation, including material properties, cabling tension as well as wrap tension. Several rotation experiments with tensile force have been performed to verify the numerical results for CFETR CSMC cables. The results show that the numerical analysis is consistent with the experiments and provides the optimal cabling conditions for large superconducting cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.