Abstract

The two-reaction theory of synchronous machines as developed by Blondel, Doherty, Nickle, Park and others is well known. The present paper attempts to develop the rotating-field theory of synchronous and induction machines as an important alternative to the two-reaction theory. The general analysis includes analysis of rotating machines under steady-state, transient-state and hunting conditions. Rotating reference frames are introduced. The new components, known as the forward and backward components, or f and b components, are then simply correlated to the direct and quadrature components, or d and q components. By use of the f and b components, it is shown that any external network and transmission line with lumped or distributed constants can be connected to a synchronous machine. This forms the basis of interconnection between synchronous and induction machines. A steady-state vector diagram of a salient-pole synchronous machine is given. Transient solution of short-circuit current and torque follows. An equivalent circuit for the same machine with direct- and quadrature-axis excitation is derived, and a 6-terminal network is developed for transient studies. The induction machine is similarly analysed with respect to its own rotor or with respect to a synchronously rotating reference frame. Interconnection of synchronous and induction machines is then possible for steady-state as well as transient studies. The hunting circuit involving one synchronous machine and a load is developed, based on Kron's uniformly rotating reference frame instead of the Blondel-Park reference frame. Hunting circuits for two rotating machines are developed, based on simple relations in absolute differential calculus. A number of instantaneous torque expressions are developed from the tensorial point of view. New expressions are given in terms of armature currents and flux linkages or their components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.