Abstract

Crack detection is a critical and essential aspect of concrete bridge maintenance and management. Manual inspection often falls short in meeting the demands of large-scale crack detection in terms of cost, efficiency, accuracy, and data management. To address the challenges faced by existing generic object detection algorithms in achieving high accuracy or efficiency when detecting cracks with large aspect ratios, overlapping structures, and clear directional characteristics, this paper presents improvements to the YOLO v5 model. These enhancements include the introduction of angle regression variables, the definition of a new loss function, the integration of PSA-Neck and ECA-Layer attention mechanism modules into the network architecture, consideration of the contribution of each node’s features to the network, and the addition of skip connections within the same feature scale. This results in a novel crack image rotation object detection algorithm named “R-YOLO v5”. After training the R-YOLO v5 model for 300 iterations on a dataset comprising 1628 crack images, the model achieved an mAP@0.5 of 94.03% on the test set, which is significantly higher than other rotation object detection algorithms such as SASM, S2A Net, Re Det, as well as the horizontal-box YOLO v5 model. Furthermore, R-YOLO v5 demonstrates clear advantages in terms of model size (4.17 MB) and detection speed (0.01 s per image). These results demonstrate that the designed model effectively detects cracks in concrete bridges and exhibits robustness, minimal memory usage, making it suitable for real-time crack detection on small devices like smartphones or drones. Additionally, the rotation object detection improvement strategy discussed in this study holds potential applicability for enhancing other object detection algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call