Abstract
In this two-part paper the phenomenon of part span rotating stall is studied. The objective is to improve understanding of the physics by which stable and persistent rotating stall occurs within high speed axial flow compressors. This phenomenon is studied both experimentally (Part I) and numerically (Part II). The experimental observations reported in Part I are now explored through the use of 3D unsteady Reynolds-averaged Navier–Stokes (RANS) simulation. The objective is to both validate the computational model and, where possible, explore some physical aspects of the phenomena. Unsteady simulations are presented, performed at a fixed speed with the three rows of variable stator vanes adjusted to deliberately mismatch the front stages and provoke stall. Two families of rotating stall are identified by the model, consistent with experimental observations from Part I. The first family of rotating stall originates from hub corner separations developing on the stage 1 stator vanes. These gradually coalesce into a multicell rotating stall pattern confined to the hub region of the stator and its downstream rotor. The second family originates from regions of blockage associated with tip clearance flow over the stage 1 rotor blade. These also coalesce into a multicell rotating stall pattern of shorter length scale confined to the leading edge tip region. Some features of each of these two patterns are then explored as the variable stator vanes (VSVs) are mismatched further, pushing each region deeper into stall. The numerical predictions show a credible match with the experimental findings of Part I. This suggests that a RANS modeling approach is sufficient to capture some important aspects of part span rotating stall behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.