Abstract

Turbulence under strong influence of rotation is described as an ensemble of interacting inertial waves across a wide range of length scales. In macroscopic quantum condensates, the quasiclassical turbulent dynamics at large scales is altered at small scales, where the quantization of vorticity is essential. The nature of this transition remains an unanswered question. Here we expand the concept of wave-driven turbulence to rotating quantum fluids where the spectrum of waves extends to microscopic scales as Kelvin waves on quantized vortices. We excite inertial waves at the largest scale by periodic modulation of the angular velocity and observe dissipation-independent transfer of energy to smaller scales and the eventual onset of the elusive Kelvin wave cascade at the lowest temperatures. We further find that energy is pumped to the system through a boundary layer distinct from the classical Ekman layer and support our observations with numerical simulations. Our experiments demonstrate a regime of turbulent motion in quantum fluids where the role of vortex reconnections can be neglected, thus stripping the transition between the classical and the quantum regimes of turbulence down to its constituent components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.