Abstract

Out-of-plane micromirrors have been developed for a wide range of applications including optical switching, beam steering, and precise transmission and reception of bio-optical signals. This paper focuses on the design, simulation, and testing of a rotating out-of-plane micromirror. The system consists of a polysilicon micromirror, which is erected to an out-of-plane position using a relatively simple postprocessing procedure. The mirror is mounted on a gear which has a rotational freedom of 360° and can be driven at frequencies ranging from 1 to 1000 Hz using an electrostatically actuated rotational drive. Multiple out-of-plane configurations of the mirror are possible, with each utilizing a serpentine spring that attaches the mirror to the gear and a position specific ?catch block? to allow 30 °, 45° , 60°, 75°, and 90° orientations of the mirror. This paper focuses on the 45° out-of-plane mirror, and it was tested for robustness as well as optical performance. A good correlation was found between experiment and various simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call