Abstract
The purpose of this paper is to discuss the relationship between rotating neutron stars, pulsars, and cosmic X-ray sources. The latter may be divided into at least two classes: the sources with large angular diameters, such as the Crab Nebula, and those with small angular diameter, such as Sco X-1. I submit that a basic model, consisting of a rotating neutron star losing mass in the presence of a large magnetic field, can account for both types of X-ray source. The extended sources represent the case where the energy in the ‘neutron-star wind’ is greater than the magnetic energy. The streaming protons and electrons deposit their energy far out into the nebula in a shock transition region. The relativistic electrons responsible for the extended sources of radio, optical and X-ray emission are produced in the transfer of energy between the protons and electrons in the shock wave, and by magnetic pumping in hydromagnetic waves which are generated by fluctuations in the mass loss rate. The compact sources, such as Sco X-1, represent the other extreme where the magnetic energy dominates, so that no mass loss occurs. The particles are then accelerated and radiate in radiation belts around the neutron star, resulting in a source with a small angular diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.