Abstract

This paper presents an analytical investigation on the buckling and post-buckling behavior of rotating nanorods subjected to axial compression and clamped at both ends. The nonlinear governing equations are derived based on the classical Euler–Bernoulli theory and Eringen's nonlocal elasticity model. The critical load parameters such as angular velocity and compressive axial force are determined for given values of nonlocality parameter. The validity, convergence and accuracy of the solutions are established by comparing them with known classical solutions. The numerical results show that an increase in the nonlocality parameter gives rise to an increase in post-buckling deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.