Abstract

In order to improve the tracking accuracy and robustness of the rotating mirror servo system, a modified sliding mode-active disturbance rejection control (MSM-ADRC) strategy is proposed. Firstly, the structure and working principle of the rotating mirror servo system are analysed, and its mathematical model is established to prepare for the design of the controller. Then, a MSM-ADRC is proposed to reduce the influence of unknown disturbance and improve the tracking accuracy. Among them, the modified sliding mode extended state observation (MSM-ESO) is designed by replacing the traditional nonlinear function with the designed optimal control function, which enhances the observation accuracy of the system state quantity and total disturbance. Meanwhile, an improved approach law is proposed, and an improved sliding mode nonlinear error feedback control law (MSM-NLSEF) is designed based on this approach law, which improves the convergence speed and accuracy of the control law. In addition, the stability of the designed MSM-ESO and MSM-NLSEF is proved. Finally, the proposed control method is validated by simulation and experimental comparison with other state-of-the-art controllers. Results reveal that the proposed control method has satisfying tracking performance and strong disturbance rejection ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call