Abstract

Structural analyses were conducted in the basal zone of an Antarctic glacier. The studied basal ice sequence was retrieved from a 20-m-long subglacial tunnel dug at the margin of the glacier and is at the temperature of −17°C. For the first time, rotating clast systems embedded within debris-rich ice were thin-sectioned using specially designed cutting techniques. The observed structures reflect the occurrence of pervasive shearing at the base of the glacier, and can be used as shear sense indicators. In addition, some of these structures provide evidence for the presence of thin liquid films at the time of formation despite the marked freezing temperature of the ice. It is showed here that cautious analysis of deformation structures present in debris-bearing ice may bring insights not only into the flow dynamics of the embedding matrix, but also into the behaviour of the interstitial fluid network at the base of cold glaciers and ice sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.