Abstract
Remaining useful life (RUL) prediction plays a significant role in developing the condition-based maintenance and improving the reliability and safety of machines. This paper proposes a remaining useful life prediction scheme combining deep-learning-based health indicator and a new relevance vector machine. First, both one-dimensional time-series information and two-dimensional time-frequency maps are input into a hybrid deep-learning structure network consisting of convolutional neural network (CNN) and long short-term memory network (LSTM) to construct health indicator (HI). Then, the prediction results and confidence interval are calculated by a new RVM enhanced by a polynomial regression model. The proposed method is verified by the public PRONOSTIA bearing datasets. Experimental results demonstrate the effectiveness of the proposed method in improving the prediction accuracy and analyzing the prediction uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.