Abstract

Towards increasingly severe worldwide pollution of industrial solid waste red mud (RM) released from aluminum industry, constitutional valuable element Al has been successfully separated for a novel mild rotating hydrothermal synthesis (150 °C, 12 h, 5 Hz) of the uniform hierarchical porous flowerlike boehmite (γ-AlOOH) microspheres in the presence of appropriate urea, which exhibit distinctly small average diameter (1.52 μm) and narrow particle size distribution (PSD: 1.12–1.97 μm), as well as high specific surface area (129.37 m2 g−1). On the one hand, the rotating hydrothermal synthesis promotes the mass and heat transfer, enabling γ-AlOOH microspheres at a lower temperature within a shorter time. On the other hand, moderate rotation provides predominant shear force, rendering the uniform γ-AlOOH microspheres with small average diameter and narrow PSD. The optimal AlOOH–U2M-R5Hz microspheres demonstrate satisfactory adsorption performance for Congo Red (CR) and Methyl Blue (MB), with the maximum adsorption capacities of 602.4 and 1208.7 mg g−1, respectively. Various isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich are utilized, adsorption kinetics are analyzed, adsorption mechanism is uncovered based on hydrogen bonding and electrostatic attraction. The increase in the temperature or the presence of coexisting cations facilitates the adsorption of CR, whereas coexisting anions weaken the adsorption of CR on the AlOOH–U2M-R5Hz microspheres. Furthermore, the excellent recycling performances and especially dynamic adsorption (retainment of removal efficiency of approx. 99.0% within 1000 min) as well as authentic water bodies (e.g. tap water and river water) simulated wastewater treatment undoubtedly indicate great practical applications of the AlOOH–U2M-R5Hz microspheres, towards cleaner aluminum production and cost-effective sustainable solution to anionic dye-bearing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.