Abstract
We present results from two 15363 direct numerical simulations of rotating turbulence where both energy and helicity are injected into the flow by an external forcing. The dual cascade of energy and helicity toward smaller scales observed in isotropic and homogeneous turbulence is broken in the presence of rotation, with the development of an inverse cascade of energy now coexisting with direct cascades of energy and helicity. In the direct cascade range, the flux of helicity dominates over that of energy at low Rossby number. These cascades have several consequences for the statistics of the flow. The evolution of global quantities and of the energy and helicity spectra is studied, and comparisons with simulations at different Reynolds and Rossby numbers at lower resolution are done to identify scaling laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.