Abstract
We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the problem shows that a nonuniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field, which tends to decrease the number of interface ripples. We contrast these results with the situation in which a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.