Abstract

In this study, spin-locking techniques were added as a part of intermolecular multiple-quantum experiments, thereby introducing the concept of rotating-frame intermolecular double-quantum spin-lattice relaxation, T(1rho, DQC). A novel magnetic resonance imaging methodology based on intermolecular multiple-quantum coherences is demonstrated on a 7.05-T microimaging scanner. The results clearly reveal that the intermolecular double-quantum coherence T(1rho, DQC)-weighted imaging technique provides an alternative contrast mechanism to conventional imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.