Abstract

The flow of a rotating homogeneous incompressible fluid over various shallow topographies is investigated. In the physical system considered, the rotation axis is vertical while the topography and its mirror image are located on the lower and upper of two horizontal plane surfaces. Upstream of the topographies and outside the Ekman layers on the bounding planes the fluid is in a uniform free-stream motion. An analysis is considered in which E [Lt ] 1, Ro ∼ E½, H/D ∼ E0, and h/D ∼ E½, where E is the Ekman number, Ro the Rossby number, H/D the fluid depth to topography width ratio and h/D the topography height-to-width ratio. The governing equation for the lowest-order interior motion is obtained by matching an interior geostrophic region with Ekman boundary layers along the confining surfaces. The equation includes contributions from the non-linear inertial, Ekman suction, and topographic effects. An analytical solution for a cosine-squared topography is given for the case in which the inertial terms are negligible; i.e. Ro [Lt ] E½. Numerical solutions for the non-linear equations are generated for both cosine-squared and conical topographies. Laboratory experiments are presented which are in good agreement with the theory advanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.