Abstract

In this paper, rotating electroosmotic flow (EOF) of power-law fluids at high zeta potentials in a slit microchannel is analyzed. The electric double layer (EDL) potential distribution is considered by using nonlinear Poisson–Boltzmann equation. Based upon the analytical charge density distribution, the finite difference method is used to compute numerically rotating EOF velocity profiles of power-law fluids. Results of the present analysis are compared with a simplified analysis obtained by Debye–Hückel linear approximation when the fluid is Newtonian. The classical steady plug-shape EOF velocity of non-Newtonian fluid is reduced for large enough time if the rotating effect is ignored. Additionally, the influences of the flow behavior index n, the rotating angular velocity Ω, wall Zeta potential ψw and the electrodynamic width K on the velocity profiles are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call