Abstract

Laser Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned smooth duct simulating the coolant passages employed in gas turbine blades under rotating and nonrotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter and bulk mean velocity was fixed at 1×104. The rotation number Ro was varied from 0 to 0.2. It is found that as Ro is increased, both the skewness (SK) of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, SK=2.3 Ro and U2+V2¯/Uh=2.3 Ro+0.4, and the magnitude of turbulence intensity level increases exponentially. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro=0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. The size of separation bubble immediately after the turn is found to diminish to null as Ro is increased from 0 to 0.2. A simple correlation is developed between the bubble size and Ro. A critical range of Ro responsible for the switch of faster moving flow from near the outer wall to the inner wall is identified. For both rotating and nonrotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local the heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in the overall enhancement of heat transfer is well addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call