Abstract

AbstractThis study used a newly developed rotating die system for purposes of reducing entrance pressure drop and sharkskin fracture for molten polypropylene (PP) and wood/polypropylene (WPP) composites in a single‐screw extruder. The sharkskin fracture characteristics of the PP and WPP composite surfaces were examined quantitatively via roughness profiles and relaxation time evaluations, and qualitatively through scanning electron microscopy under the effects of wood content, shear rate, die temperature, and die rotation speed. The experimental results suggested that the entrance pressure drop of PP increased with increasing wood content and shear rate. The die entrance pressure drop for WPP composite melt with 30 wt % wood content could be minimized by 20–50% by using a die rotation speed of 70 rpm. The roughness level (sharkskin) and relaxation time were found to increase with increasing wood content, but could be minimized by rotating the die—the die rotating effect being more meaningful for WPP when compared with neat PP extrudate. The rotating die system was found to be an effective technique for minimizing the extrusion load and fracture level of extrudate skins for high‐viscosity materials such as the WPP composites used in this work. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.