Abstract
To explore the rotational excitation of deformed halo nuclei, the angular momentum projection (AMP) has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), in which both the mean field and collective wave functions are expanded in terms of Dirac Woods-Saxon basis. The DRHBc + AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states. The rotational modes of deformed halos in 42,44Mg are investigated by studying properties of rotational states such as the excitation energy, configuration, and density distribution. Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states. Especially, the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.