Abstract

We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or induced by external forcing, can stabilize periodic rolls in the Küppers-Lortz chaotic regime. We apply this to the particular case of rotating convection with time-modulated rotation where recently, in experiment, spiral and target patterns have been observed in otherwise Küppers-Lortz-unstable regimes. We show how the underlying base flow breaks the isotropy, thereby affecting the linear growth rate of convection rolls in such a way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of the Swift-Hohenberg equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.