Abstract

Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian vector multiplets were classified, we construct genuine rotating supersymmetric black holes in AdS(4) with nonconstant scalar fields. This is done for the SU(1,1)/U(1) model with prepotential F=-iX^0X^1. In the static case, the black holes are uplifted to eleven dimensions, and generalize the solution found in hep-th/0105250 corresponding to membranes wrapping holomorphic curves in a Calabi-Yau five-fold. The constructed rotating black holes preserve one quarter of the supersymmetry, whereas their near-horizon geometry is one half BPS. Moreover, for constant scalars, we generalize (a supersymmetric subclass of) the Plebanski-Demianski solution of cosmological Einstein-Maxwell theory to an arbitrary number of vector multiplets. Remarkably, the latter turns out to be related to the dimensionally reduced gravitational Chern-Simons action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.