Abstract
Abstract The study investigates fatigue failure, a common phenomenon in machine elements subjected to cyclic stresses. The analysis emphasizes that the actual stress experienced by materials often falls below their tensile and yield strengths due to repetitive variable stresses, leading to fatigue damage. Fatigue life is measured by the number of cycles endured before failure. This paper focuses on the aluminum alloy of AlSi10MgMn, extensively used in manufacturing due to its strength, low density, and corrosion resistance. Experimental procedures encompassed tensile testing, microstructural examination, SEM analysis, and fatigue testing. Tensile tests provided initial stress values for fatigue testing. Microstructure analyses verified that heat-treated samples exhibited precipitates. SEM analysis disclosed microstructural characteristics, while fracture surface examinations demonstrated higher fatigue resistance in heat-treated specimens. Hardness measurements were conducted, with heat-treated samples showing higher values. Theoretical calculations based on stress and cycle numbers were compared to experimental fatigue results. The derived equations aligned well with the tests. Ultimately, the study underlines the importance of heat treatment on material behavior and fatigue resistance, shedding light on alloy performance and durability enhancement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.