Abstract
We introduce a new, to the best of our knowledge, optical component-a rotated chirped volume Bragg grating (r-CBG)-that spatially resolves the spectrum of a normally incident light beam in a compact footprint and without the need for subsequent free-space propagation or collimation. Unlike conventional chirped volume Bragg gratings in which both the length and width of the device must be increased to increase the bandwidth, by rotating the Bragg structure we sever the link between the length and width of a r-CBG, leading to a significantly reduced device footprint for the same bandwidth. We fabricate and characterize such a device in multiple spectral windows, we study its spectral resolution, and confirm that a pair of cascaded r-CBGs can resolve and then recombine the spectrum. Such a device can lead to ultracompact spectrometers and pulse modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.