Abstract

This paper addresses the control of dynamic behavior of the rotary wing flying robot in hover, which is complex in shape and motion as nonlinear aerodynamic forces and gravity acts on the system. Due to limited accuracy of the dynamic model, the attitude dynamics is conditionally stable where a minimum amount of attitude feedback is required for system stability. To compensate for conditional stability, a controller for both roll and pitch dynamics is developed adopting cascade control loop feedback architecture where INS system feedback is used for outer control loop while the gyro feedback is adopted for the inner control loop to attain a high bandwidth, ensuring attitude stability with accelerated response required for a steady hover. The provided solution is tested on Hirobo Scheadu50 model and the system performance is analyzed during hover using the proposed controller. Through taut integration of simulation and flight-test validation, a controller is developed that is sufficiently accurate, quite effective and simple enough for handling complex and changing rotorcraft dynamics in hover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.