Abstract

Among the various material removal processes applicable to ceramic materials, rotary ultrasonic machining has the potential for high material removal rate while maintaining low machining pressure and resulting in less surface damage. The limitation of rotary ultrasonic machining is that only circular holes or cavities can be machined due to the rotary motion of the tool. Attempts have been made by other researchers to extend rotary ultrasonic machining process to machining flat surfaces or milling slots. However, these extensions either changed the material removal mechanisms or had some severe drawbacks. One of the reasons for this might be an insufficient understanding of the material removal mechanisms involved. In this paper, a new approach to extend rotary ultrasonic machining to face milling of ceramics is proposed, which keeps all the material removal mechanisms of rotary ultrasonic machining. The development of the experimental apparatus and the design of the cutting tool are described. Preliminary experimental results are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.