Abstract

Experiments on rotary truing of vitreous bond diamond grinding wheels were conducted to investigate the effects of truing speed ratio, type of diamond in the metal bond truing disks (synthetic versus natural), and diamond grit size in the grinding wheel on the wear of truing disk and on the cylindrical grinding of zirconia. Similar to G-ratio, a new parameter called D-ratio is defined to quantify the wear rate of the diamond truing disks. Experimental results show that, under the same truing condition, the truing disk with blocky, low friability synthetic diamond has a higher D-ratio than the truing disk with natural diamond. Diamond wheels trued by the disk with synthetic diamond also generate lower grinding force and rougher surface finish. High truing disk surface speed, 1.8 times higher than the surface speed of the grinding wheel, was tested and did not show any improvement in D-ratio. This study indicates that μm-scale precision form truing of the vitreous bond diamond wheel is difficult due to excess wear of the metal bond diamond truing disk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.