Abstract

AbstractThis paper describes the basic design features of a new reaction injection molding (RIM) processing device, Rotary Injection RIM (RI‐RIM). The new design includes a novel mixing concept which furnishes high intermaterial contact area upon shear imposed rotary injection of the RIM components for effective in situ polymerization. This system operates in low pressure and laminar flow conditions, as opposed to the high pressure and turbulent flow, found in conventional RIM systems. The mixing process is described and quantified in terms of the various forces which govern the injection process. A progressive diminution in the average size of the dispersions generated is found with increasing rate of shear, continuous‐phase viscosity, and injection rate. These results are compared with those expected from traditional shear mixing (bulk convective shearing) under comparable conditions and the current system found to be more efficacious. Reaction molding experiments with RI‐RIM using a model polyurethane system are described and the influence of operating conditions on the mechanical properties of the finished moldings are elucidated. A detectable change in the morphology of the system is observed following increase in the total shear strain imparted to the initial mix of the multiphase reactants. It is suggested that the observed change is affected by a segregation between the components of the segmented polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.