Abstract

Abstract The interaction of open and coastal oceans in a midlatitude ocean basin is investigated in light of Rossby and coastal Kelvin waves. The basinwide pressure adjustment to an initial Rossby wave packet is studied both analytically and numerically, with the focus on the low-frequency modulation of the resulting coastal Kelvin wave. It is shown that the incoming mass is redistributed by coastal Kelvin waves as well as eastern boundary planetary waves, while the incoming energy is lost mostly to short Rossby waves at the western boundary. The amplitude of the Kelvin wave is determined by two mass redistribution processes: a fast process due to the coastal Kelvin wave along the ocean boundary and a slow process due to the eastern boundary planetary wave in the interior ocean. The amplitude of the Kelvin wave is smaller than that of the incident planetary wave because the initial mass of the Rossby wave is spread to the entire basin. In a midlatitude ocean basin, the slow eastern boundary planetary wave...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call