Abstract
The generation of Rossby rogue waves (Rossby rogons), as well as the excitation of bright and dark Rossby envelpe solitons are demonstrated on the basis of the modulational instability (MI) of a coherent Rossby wave packet. The evolution of an amplitude-modulated Rossby wave packet is governed by a one-dimensional (1D) nonlinear Schrödinger equation (NLSE). The latter is used to study the amplitude modulation of Rossby wave packets for fluids in Earth's atmosphere and in the solar photosphere. It is found that an ampitude-modulated Rossby wave packet becomes stable (unstable) against quasi-stationary, long-wavelength (in comparision with the Rossby wavelength) perturbations, when the carrier Rossby wave number satisfies k2 < 1/2 or (k2 > 3 or ). It is also shown that a Rossby rogon or a bright Rossby envelope soliton may be excited in the shallow-water approximation for the Rossby waves in solar photosphere. However, the excitation of small- or large-scale perturbations may be possible for magnetized plasmas in the ionosphereic E-layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.