Abstract

Rosmarinic acid (RA) is extensively utilized in herbal medicine in China. The AMP-activated protein kinase (AMPK) signaling can be activated by RA and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C (CC). The objective of this study was to investigate the role of AMPK signaling involving the protective effects of RA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice. BALB/c mice were treated with RA, with or without CC, followed by the pretreatment with Con A. Analysis of serum aminotransferases and cytokines were conducted and liver tissue histology was performed to evaluate hepatic injury. Cytokine levels in serum and hepatic tissue were respectively measured by enzyme-linked immunoassay (ELISA) and used quantitative (q)PCR. Levels of phosphorylated acetyl CoA carboxylase in the liver, representing AMPK activation, were detected by Western blotting. Compared with the Con A group, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in RA group (100 and 150 mg/kg/d) were significantly reduced. RA also reduced hepatocyte swelling, cell death, and infiltration of leukocytes in the liver of Con A-treated mice. Serum levels of cytokines, such as interferon-γ (IFN-γ), interleukin-2 (IL-2) and interleukin-1β (IL-1β), were reduced by RA pretreatment, while the levels of serum interleukin-10 (IL-10), an anti-inflammatory cytokine, was elevated. These protective effects were reversed by treatment with CC. RA treatment reduced the hepatic damage via the activation of AMPK in the mice of Con A-induced. So RA acts as a potential part in the therapy of autoimmune hepatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.