Abstract
Status epilepticus (SE) leads to irreversible neuronal damage and consists of a complex pathogenesis that involves oxidative stress and subsequent autophagy. Rosiglitazone has recently been considered as a potential neuroprotective factor in epilepsy because of its antioxidative function. The aim of this study was to assess the effects of rosiglitazone in SE rat models and investigate whether its mechanisms of action involve autophagy via the antioxidant factor, nuclear factor erythroid 2-related factor 2 (Nrf2). The male Sprague-Dawley rats (200–220 g) were used to establish lithium-pilocarpine-induced SE model. We found that rosiglitazone markedly improved neuronal survival at 24-h post-SE as indicated via Hematoxylin-Eosin and Nissl staining. Furthermore, along with a reduction in reactive oxygen species, rosiglitazone pretreatment enhanced the antioxidative activity of superoxide dismutase and the expression level of Nrf2, as detected via chemical assay kits and Western blotting, respectively. In addition, the microtubule-associated protein light chain 3II (LC3II)/LC3I ratio was increased and peaked at 24 h after SE, whereas p62 mRNA levels were sharply elevated at 72 h after SE, both SE-induced increases of which were reversed via rosiglitazone pretreatment. To further test our hypothesis of the key role of Nrf2 in this process, small-interfering RNA for Nrf2 (siNrf2) was then transfected into SE rats to knockdown Nrf2 expression. We found that siNrf2 partially blocked the above effects of rosiglitazone on autophagy-related proteins in SE rats. Taken together, our findings suggest that rosiglitazone attenuates oxidative-stress-induced autophagy via increasing Nrf2 in SE rats and may be used as a promising therapeutic strategy for SE treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.