Abstract

The activation of hepatic stellate cells (HSCs) is involved in hepatic fibrogenesis and is regulated by the decreased expression of peroxisome proliferator-activated receptor γ (PPARγ). Rosiglitazone (RGZ) is a highly potent agonist of PPARγ. To clarify molecular regulatory mechanism of RGZ in the activation of HSCs in hepatic fibrosis. A mouse model of hepatic fibrosis was established by carbon tetrachloride with or without RGZ intervention. A vector carrying pcDNA-HOTAIR was constructed and injected into a mouse model. HSCs were isolated from liver tissue and activated by transforming growth factor-β. The expression of miR-124-3p, HOTAIR, Col1A1, α-SMA, and PPARγ mRNAs was measured by quantitative real-time PCR. The level of PPARγ was measured by Western blotting. The interaction between HOTAIR and PPARγ was assessed by RNA immunoprecipitation (RIP) and RNA pull-down. The target gene of miR-124-3p was determined by luciferase reporter assay and RNA interference approaches. The expression of Col1A1 and α-SMA was reduced after RGZ intervention. Different expressions of HOTAIR and miR-124-3p were observed in liver tissue and HSCs. The luciferase reporter assay and RNA interference approaches indicated that miR-124-3p negatively regulated HOTAIR expression. RIP and RNA pull-down results revealed that PPARγ was interacted by HOTAIR. The therapeutic effect of RGZ on hepatic fibrosis was reversed by overexpression of HOTAIR. RGZ inhibits the activation of HSCs by up-regulating miR-124-3p. The silencing of HOTAIR by miR-124-3p in HSC activation provided the foundation to understand interactions of ncRNAs and potential treatment target in hepatic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.