Abstract
Rosiglitazone (RL), a second-generation thiazolidinedione (TZD), is an oral antidiabetic agent that is reportedly associated with hepatotoxicity. However, the molecular mechanism of Rosiglitazone induced hepatotoxicity has not been reported yet. To minimize clinical risk, in the present study, toxicity was evaluated initially in C57BL/6 mice to confirm the hepatotoxicity of Rosiglitazone. Subsequently, the transcription of genes, the up-regulated expression of proteins and changes of metabolite spectrum in bile acid system in accordance with system pharmacology and multi-omics profiling strategy were investigated to reveal its toxic mechanism. Results show an obvious Rosiglitazone induced hepatocyte injury in our experiment. Changes in bile acid profiles revealed that Rosiglitazone administration increased the concentration of deoxycholic acid (DCA) in the liver, but decreased those of other bile acids. Transcriptomic and proteomic data showed that while the expression of efflux transporters ABCC3, ABCC4 and ABCB11 was upregulated following Rosiglitazone treatment, the expression of two hepatic uptake transporters, OATP1A1 and OATP1A4, which were negatively associated with DCA accumulation, were significantly downregulated. These results indicated that cholestasis, especially the accumulation of DCA in the liver, is the primary factors responsible for Rosiglitazone induced hepatocyte injury. The mechanism of Rosiglitazone induced DCA accumulation in the liver may be the result of stimulated intestinal permeability and increased biosynthesis and uptake of DCA and weakening of DCA amidation to reduce DCA efflux due to the inhibition of OATP1A1 and OATP1A4 expression in the liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.