Abstract

Rosiglitazone, an important peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, improves left ventricular (LV) hypertrophy in diet-induced hypercholesterolemic rats. However, the effects and underlying mechanisms of rosiglitazone on myocardial remodeling in spontaneous hypertension rats (SHRs) are unclear. Twenty male 8-week-old SHRs were randomly divided into two groups: one treated with oral saline (n=10) and the other treated with rosiglitazone (5 mgkg(-1)day(-1), n=10). Ten age-matched Wistar-Kyoto rats were selected as a normal control group. Echocardiography, immunohistochemistry, real-time reverse transcriptase-PCR and western blot analysis were performed to assess the effects of rosiglitazone. After 16 weeks of treatment, LV hypertrophy was significantly attenuated by rosiglitazone (LV weight/body weight, 2.35±0.11 vs. 2.56±0.14 mgg(-1)). According to the echocardiography results, thickening of the LV wall was reduced, and mid-wall fractional shortening was improved by rosiglitazone. Similarly, the excessive collagen deposition and upregulation of collagen I and collagen III seen in SHRs receiving saline were significantly attenuated in SHRs receiving rosiglitazone. In addition, rosiglitazone treatment increased the activity of matrix metalloproteinase-9 (MMP-9) and normalized the MMP-9/tissue inhibitor of metalloproteinase-1 ratio. Furthermore, activator protein-1 (AP-1) activation and nuclear factor-kappa B (NF-κB) expression were suppressed in the rosiglitazone-treated group. These results demonstrate that the PPAR-γ agonist rosiglitazone had beneficial effects on myocardial remodeling in SHRs by way of decreasing AP-1 activation and NF-κB expression, which may help in further inhibiting transcription of the downstream genes involved in the pathogenesis of myocardial remodeling induced by hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call