Abstract

Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilibrium. Despite its general applicability, the Fokker-Planck equationgoverning such evolution is mainly studied within the borders of the linear response theory, although alternative spectral expansion approaches offer some advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck approach with their counterparts from the spectral expansion. A tight relationship emerges between several of these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage times). "Coefficients" like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked out paving the way to accurately characterize the critical points and the relaxation timescales in networks of interacting populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.