Abstract

Deeper understanding of processes of protein misfolding, aggregation, formation of oligomers, protofibrils, and fibrils is crucial for the development of future medicine in treatment of amyloid-related diseases. While numerous reports illuminate the field, the above processes are extremely complex, as they depend on many varying parameters, such as the peptide concentration, temperature, pH, presence of metal ions, lipids, and organic solvents. Different mechanisms of amyloid fibril formation have been proposed, but the process of the oligomer-to-fibril transition is the least agreed upon. Our studies of a number of amyloidogenic proteins and peptides (insulin, Aβ peptides, the Bgl2 protein from the yeast cell wall), as well as their amyloidogenic fragments, have allowed us to propose a model of the fibril structure generation. We have found that the main building block of fibrils of any morphology is a ring-like oligomer. The varying models of interaction of ring oligomers with each other revealed in our studies make it possible to explain their polymorphism. Crucially, the amino acid sequence determines the oligomer structure for the given protein/peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.