Abstract

Context. The Rosetta spacecraft arrived at the comet 67P/Churyumov-Gerasimenko on August 6, 2014, which has made it possible to perform the first study of the solar wind interacting with the coma of a weakly outgassing comet.Aims. It is shown that the solar wind experiences large deflections (>45°) in the weak coma. The average ion velocity slows from the mass loading of newborn cometary ions, which also slows the interplanetary magnetic field (IMF) relative to the solar wind ions and subsequently creates a Lorentz force in the frame of the solar wind. The Lorentz force in the solar wind frame accelerates ions in the opposite direction of cometary pickup ion flow, and is necessary to conserve momentum.Methods. Data from the Ion and Electron Sensor are studied over several intervals of interest when significant solar wind deflection was observed. The deflections for protons and for He++ were compared with the flow of cometary pickup ions using the instrument’s frame of reference. We then fit the data with a three-dimensional Maxwellian, and rotated the flow vectors into the Comet Sun Equatorial coordinate system, and compared the flow to the spacecraft’s position and to the local IMF conditions.Results. Our observations show that the solar wind may be deflected in excess of 45° from the anti-sunward direction. Furthermore, the deflections change direction on a variable timescale. Solar wind protons are consistently more deflected than the He++ . The deflections are not ordered by the spacecraft’s position relative to the comet, but large changes in deflection are related to changes in the orthogonal IMF components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call