Abstract
Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers. In this paper, motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng (2006, 2008b), we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations. As an application, we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.