Abstract

In 1960, J. B. Rosen gave a famous Gradient Projection Method in [1]. But the convergence of the algorithm has not been proved for a long time. Many authors paid much attention to this problem, such as X.S. Zhang proved in [2] (1984) that the limit point of {xk} which is generated by Rosen's algorithm is a K-T piont for a 3-dimensional caes, if {xk} is convergent. D. Z. Du proved in [3] (1986) that Rosen's algorithm is convergent for 4-dimensional. In [4] (1986), the author of this paper gave a general proof of the convergence of Rosen's Gradient Projection Method for ann-dimensional case. As Rosen's method requires exact line search, we know that exact line search is very difficult on computer. In this paper a line search method of discrete steps are presented and the convergence of the algorithm is proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.