Abstract

Convenient and sensitive detection of biomolecules is of utmost importance in the field of early disease screening. In this study, a Rose Bengal-Mediated photoinduced atom transfer radical polymerization (photoATRP) method was used to achieve highly sensitive detection of target DNA (tDNA). The tDNA was specifically recognized using PNA with terminal modified sulfhydryl groups, and the initiator α-bromophenylacetic acid (BPAA) was attached to the electrode surface via a phosphate-Zr4+-carboxylate acid structure. Under the excitation of blue light, rose bengal (RB) acts as a photocatalyst, β-nicotinamide adenine dinucleotide (NADH) as an electron donor, and ferrocenylmethyl methacrylate (FMMA) as a monomer to activate the photoATRP reaction and generate a large number of electroactive polymer chains on the electrode surface. Under optimal conditions, the method can be used for the quantitative analysis of tDNA in the concentration range of 1–105 fM (R2 = 0.994) with a limit of detection (LOD) of 0.115 fM. This metal-free mediated photoATRP biosensor, with low cost and environmental friendliness, has great potential in the field of highly sensitive biomolecule detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.