Abstract
Robot systems are growing in importance and complexity. Ecosystems for robot software, such as the Robot Operating System (ROS), provide libraries of reusable software components that can be configured and composed into larger systems. To support compositionality, ROS uses late binding and architecture configuration via “launch files” that describe how to initialize the components in a system. However, late binding often leads to systems failing silently due to misconfiguration, for example by misrouting or dropping messages entirely.In this paper we present ROSDiscover, which statically recovers the run-time architecture of ROS systems to find such architecture misconfiguration bugs. First, ROSDiscover constructs component level architectural models (ports, parameters) from source code. Second, architecture configuration files are analyzed to compose the system from these component models and derive the connections in the system. Finally, the reconstructed architecture is checked against architectural rules described in first-order logic to identify potential misconfigurations.We present an evaluation of ROSDiscover on real world, off-the-shelf robotic systems, measuring the accuracy, effectiveness, and practicality of our approach. To that end, we collected the first data set of architecture configuration bugs in ROS from popular open-source systems and measure how effective our approach is for detecting configuration bugs in that set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.