Abstract

Bioactive constituents from Rhodiola rosea L. show a myriad of pharmacological effects on diverse diseases. Rosavin has been linked to reduced osteoclastogenesis, while its role in regulating osteogenesis remains unclear. The present study investigated whether and how Rosavin alleviates ovariectomy (OVX)-induced osteoporosis (OP) in mice. Rosavin had a therapeutic effect on OP in ovariectomized mice and inhibited osteoclast viability and promoted osteoblast viability. Integrated transcriptome sequencing, GO enrichment analysis, and PPI network construction revealed that the HDAC1/EEF2 axis was an important axis of gene action for Rosavin treatment. Mechanistically, HDAC1 suppressed EEF2 expression through histone deacetylation. Rescue experiments exhibited that HDAC1 promoted osteoclast viability, while EEF2 reversed the action of HDAC1 to restore bone homeostasis. In mice with OP, HDAC1 mitigated the effects of Rosavin, resulting in enhanced bone resorption and diminished bone formation, while EEF2 contributed to reduced bone resorption and elevated bone formation in mice. NF-κB and MAPK pathways were inhibited by Rosavin, enhanced by HDAC1, and blocked again by EEF2. To summarize, our results proved that Rosavin maintained bone homeostasis in OP via regulation of histone acetylation of EEF2, thus playing a key role as a therapeutic candidate for OP treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.